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Abstract

This thesis is primarily concerned with understanding the process of galaxy formation

via the simulation of the interstellar medium, star formation and supernova feedback.

In order to probe galaxy formation it is necessary that we first obtain a basic knowledge

of the cosmological framework in which we are working. Therefore in chapter 1 we

provide a brief overview of the salient features of the current cosmological paradigm in

addition to discussing in some detail the physics of the interstellar medium

In chapter 2 we focus on the numerical methods necessary to perform accurate cos-

mological simulations. We begin by providing an overview of the different simulation

techniques currently in use in the field before performing comparisons of two simula-

tion codes that work via two completely different methods. We then introduce a code

for generating high-resolution initial conditions for the simulation of individual objects

and investigate the numerical effects of mass resolution in cosmological simulation.

In chapter 3 we describe a statistical model of the interstellar medium, in which the

conversion of cooling gas to stars in the multiphase interstellar medium is governed by

the rate at which molecular clouds are formed and destroyed. In the model, clouds form

from thermally unstable ambient gas and get destroyed by star formation, feedback and

thermal conduction.

In chapter 4 this statistical model is applied to the simulation of isolated disk galaxies.

We show that it naturally produces a multiphase medium with cold clouds, a warm

disk and hot supernova bubbles. We illustrate this by evolving an isolated Milky Way-

like galaxy. Many observed properties of disk galaxies are reproduced well, including

the molecular cloud mass spectrum, the molecular fraction as a function of radius, the

Schmidt law, the stellar density profile and the appearance of a galactic fountain.

Finally in chapter 5 we perform an investigation into more dynamic situations, namely

the evolution of gravitationally interacting disk galaxies and the formation of a galaxy

in a fully cosmological simulation. It is found that the sticky particle model does a good

job of reproducing many of the observed properties of interacting galaxies, including the

properties of the ISM in the resulting elliptical galaxy.
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